До прошлого десятилетия самым сильным основанием в течение трех десятков лет считали метил-анион H3C–. Рекорд основности метил-аниона аниона был побит в 2008 году с получением аниона LiO–, однако он не продержался и десятилетие – синтез австралийскими исследователями дианиона, устойчивого в газовой фазе, отбросил анион LiO– на второе место в шкале основности.
Сверхноснования (супероснования), которые отличаются высоким сродством к протону, такие, как, например, бутиллитий или гидрид натрия, чрезвычайно важны для органического синтеза. Химики-синтетики применяют эти вещества на практике для депротонирования слабых кислот – чем слабее кислота, тем более сильное основание требуется для её депротонирования. Бервик Поад (Berwyck Poad) и его коллеги из Вуллонгонгского университета вели целенаправленный поиск сверхосновных многозарядных анионов, получить которые не так просто из-за их неустойчивости, связанной с взаимным отталкиванием одноимённых зарядов.
Компьютерное моделирование, позволяющее рассчитать скорость переноса электронов, позволило предсказать относительно высокую устойчивость сопряженного орто-диэтинилбензол-аниона. Как отмечает Поад, самым интересным моментом работы можно считать то обстоятельство, что устойчивость дианиона была предсказана в рамках в рамках квазиклассического приближения теории Маркуса.
С другой стороны – расчеты, проведенные для определения сродства к протону дианиона, даже не половина работы, даже по окончанию работы главными вопросом исследования остается возможность экспериментального получения вещества с предсказанными свойствами. Поад с коллегами успешно завершил и «синтетическую» часть работы – он успешно синтезировал сверхосновный анион, который даже способен депротониовать такую слабую С–Н кислоту, как бензол.
Как отмечает Роберт Вианелло (Robert Vianello), эксперт по межмолекулярным взаимодействиям и дизайну новых органических материалов, отмечает, что проделанная австралийскими исследователями работа будет иметь большое значение и для теории, предоставляя новую информацию о строении анионов, основности и природе химической связи, и для практики – основные и сверхосновные вещества находят широкое применение в нефтепереработке, катализаторах полимеризации и устройствах конверсии химической энергии и энергии света в электроэнергию.
Источник: Chem. Sci., 2016, DOI: 10.1039/c6sc01726f