Вход в личный кабинет
запомнить меня
Блог «Рупор реальности»
Статьи
Интервью
Рейтинги
Объявления
О блоге
Несколько слов о жизни КФУ
Основатель блога Алсу Гарапова
Авторы блога ...
Всего записей 63
Число подписчиков 1
Число комментариев 4
Место в рейтинге
5
Сумма баллов
438
Награды
Описание блога
Новости, интервью, заметки путёвые и не очень из уст журналиста газеты "Казанский университет".
Фотогалерея
Фракталы: бесконечность внутри нас
04.08.2016
Рубрики:
940
3
0
Что объединяет папоротник, кровеносную систему человека и трещину на стене хрущевки? Ответ на это даст только математика.

Фрактал – это некая фигура со свойством самоподобия, то есть, сколько бы мы не приближались к такому предмету, мы будем видеть ту же картину, что была изначально. Классические примеры фракталов - это папоротник, капуста брокколи, капуста романеско, горные пейзажи. В природе таких явлений достаточно много. Пока математики всерьез не взялись за такие объекты, не было ясно, как можно с ними взаимодействовать. Например, стоит задача: нарисовать кровеносные сосуды в легких. Это практически невозможно сделать без применения фрактальной геометрии.

Мы попросили Давида Каца, аспиранта Института математики и механики К(П)ФУ, выступить для нас проводником в этот странный мир бесконечного повторения.

 

Брокколи – конечно, полезный, замечательный продукт, но математики обычно с капустой дело не имеют. – начинает рассказ Давид. - Возникают различные математические объекты.

Самый классический объект: «Множество Кантора» или «Канторова пыль». Мы берем отрезок, делим его на три части и среднюю часть выкидываем. Потом повторяем и повторяем эту процедуру с каждым из оставшихся отрезков. В чем странность этого объекта? Несмотря на то, что мы постоянно что-то выкидываем, у нас остается множество точек, весьма сложно устроенных. Есть еще один более замысловатый пример: «Салфетка Серпинского». Берем равносторонний треугольник, в серединах его сторон отмечаем точки, соединяем. Получаем равносторонний треугольник, который вырезаем. У нас остается три равносторонних треугольника. Дальше, как можно уже понять, мы то же самое делаем с каждым из треугольников до бесконечности. В чем здесь странные свойства? Исходный треугольник мы можем сделать сколь угодно большим, но при этом площадь у него будет нулевая. Еще один фрактал – «Снежинка Коха». Мы берем равносторонний треугольник, каждую сторону делим на три части и достраиваем по равностороннему треугольнику. После с каждым из маленьких треугольников операцию повторяем.

"Салфетка Серпинского" в Зд

Несмотря на то, что фрактальные фигуры были замечены в природе и сконструированы математиками уже довольно давно, впервые научно обосновать существование фракталов смог Бенуа Мандельброт лишь в 1970-х годах. Ему была большая оппозиция: такого рода объекты в научной литературе часто назывались «монстрами», к ним скептически относились. В классической евклидовой геометрии все прямо: либо прямые, либо углы, либо, в крайнем случае, какие-то гладкие линии. Там нет непонятных вещей, которые бы постоянно себе отращивали новое «ухо». Несмотря ни на что Мандельброт сумел «продвинуть» свои исследования. Более того, всему этому нашлось практическое применение.

Множество Мандельброта

Почему их называли «монстрами»? – комментирует Давид. - Во-первых, их нельзя изобразить вручную (в отличии от «хороших» конечных фигур). Это плохо, так как наш мозг привык работать с визуальными картинками. С появлением компьютера мы с грехом пополам начали справляться с задачей отрисовывания фракталов. Во-вторых, вычислительные методы, которые нам были раньше известны (матанализ и так далее), хорошо работали только с «гладкими» кривыми. Все кривые делятся на два больших класса: спрямляемые и неспрямляемые. На спрямляемую кривую мы можем поставить точки, и тем самым разбить ее на множество прямых отрезков. Таким образом мы посчитаем длину этой кривой, так как длина традиционно считается только прямыми отрезками. Это как в школе, когда к сложным фигурам прикладывали нитку, а потом нитку распрямляли и прикладывали к линейке. Вся классическая математика связана с таким вот свойством. К фракталам, как мы видим, ниточку не доприкладываешься.

С точки зрения классической механики, также возникают проблемы в взаимодействии с фракталами. Скорость – это вектор. У вектора должны быть направление и величина. Если мы погоним точку по любой неспрямляемой кривой, то мы увидим, что у ее скорости не будет ни направления, ни величины.

Капуста Романеско

Реальность такова: все, с чем мы имеем дело в школе: прямые, параболы, синусоиды, – это лишь красивое исключение из правил, которое в природе встречается крайне редко. Мир состоит из «монстров» - из фракталов и других неспрямляемых кривых.

А нам хочется все уметь считать, - продолжает Давид. - Сейчас в мире работа математиков сконцентрирована на том, чтобы стандартные методы математики распространить и на эти странные явления. В этом деле наблюдается прогресс, но еще есть куда стремиться. Сейчас используется следующий метод: мы берем конкретный фрактал и даем ему некую числовую характеристику. Моя научная деятельность (та, которую я начал еще в магистратуре) непосредственно связана с разработкой одного из типов характеристик этих самых фракталов. Ведется работа по двум основным направлениям. Первое – это интегрирование. Взятие интегралов по неспрямляемым кривым. Второе: у меня введены конкретные характеристики этих фракталов, они у меня называются «Показатели Марцинкевича» (в честь польского математика Йозефа Марцинкевича, а не российского националиста). Эти показатели помогают лучше справляться с некоторыми краевыми задачами. До этого были либо несчитаемые характеристики, либо менее точные.

Есть надежда, что в будущем мы переведем всю математику на рельсы неспрямляемых кривых, и это даст прибавку везде. Это даст нам гораздо большую точность в любых расчетах. В обществе распространено мнение об отдаленности математической науки от реальности, от практики. Но это не так. Одно из самых главных, чему учат на мехмате – это построение и изучение математических моделей, моделей того, что нас окружает. А уж что вы будете делать с этими моделями – решать вам. Как говорится, пистолет дали – крутись.

 

А на практике фрактальная геометрия оказывается полезной во многих областях. В первую очередь, в биотехнологиях. Например, при диагностировании онкозаболеваний. Если фрактальная сетка сосудов в каком-то месте нарушена, то следует обратить туда внимание: почти наверняка именно этот участок выступит очагом болезни. Что касается окружающей среды. Как выяснили ученые, лес – это один большой фрактал. С помощью фрактальной геометрии можно бороться с исчезновением лесного массива на Земле, прогнозировать, как именно будет разрастаться молодой лес, выявить его слабые места. Это все можно сделать, лишь наблюдая за одним деревом как частью фрактала. Более того, фрактальные антенны (которые используются в мобильных телефонах) работают лучше, чем обычные, в экономических графиках тоже наблюдаются фракталы – теперь мы лучше представляем, как с ними работать. В инженерном деле, например, при устранении трещин, а также в компьютерной графике также необходимо применение методов фрактальной геометрии.

 

Алсу ГАРАПОВА

Комментарии
Лента блога

Фракталы: бесконечность внутри нас

Фрактал – это некая фигура со свойством самоподобия, то есть, сколько бы мы не приближались к такому предмету, мы будем видеть ту же картину, что была изначально. Классические примеры фракталов - это папоротник, капуста брокколи, капуста романеско, горные пейзажи. В природе таких явлений достаточно много. Пока математики всерьез не взялись за такие объекты, не было ясно, как можно с ними взаимодействовать. Например, стоит задача: нарисовать кровеносные сосуды в легких. Это практически невозможно сделать без применения фрактальной геометрии.
Мы попросили Давида Каца, аспиранта Института математики и механики К(П)ФУ, выступить для нас проводником в этот странный мир бесконечного повторения.
 

Брокколи – конечно, полезный, замечательный продукт, но математики обычно с капустой дело не имеют. – начинает рассказ Давид. - Возникают различные математические объекты.
Самый классический объект: «Множество Кантора» или «Канторова пыль». Мы берем отрезок, делим его на три части и среднюю часть выкидываем. Потом повторяем и повторяем эту процедуру с каждым из оставшихся отрезков. В чем странность этого объекта? Несмотря на то, что мы постоянно что-то выкидываем, у нас остается множество точек, весьма сложно устроенных. Есть еще один более замысловатый пример: «Салфетка Серпинского». Берем равносторонний треугольник, в серединах его сторон отмечаем точки, соединяем. Получаем равносторонний треугольник, который вырезаем. У нас остается три равносторонних треугольника. Дальше, как можно уже понять, мы то же самое делаем с каждым из треугольников до бесконечности. В чем здесь странные свойства? Исходный треугольник мы можем сделать сколь угодно большим, но при этом площадь у него будет нулевая. Еще один фрактал – «Снежинка Коха». Мы берем равносторонний треугольник, каждую сторону делим на три части и достраиваем по равностороннему треугольнику. После с каждым из маленьких треугольников операцию повторяем.

"Салфетка Серпинского" в Зд
Несмотря на то, что фрактальные фигуры были замечены в природе и сконструированы математиками уже довольно давно, впервые научно обосновать существование фракталов смог Бенуа Мандельброт лишь в 1970-х годах. Ему была большая оппозиция: такого рода объекты в научной литературе часто назывались «монстрами», к ним скептически относились. В классической евклидовой геометрии все прямо: либо прямые, либо углы, либо, в крайнем случае, какие-то гладкие линии. Там нет непонятных вещей, которые бы постоянно себе отращивали новое «ухо». Несмотря ни на что Мандельброт сумел «продвинуть» свои исследования. Более того, всему этому нашлось практическое применение.

Множество Мандельброта

Почему их называли «монстрами»? – комментирует Давид. - Во-первых, их нельзя изобразить вручную (в отличии от «хороших» конечных фигур). Это плохо, так как наш мозг привык работать с визуальными картинками. С появлением компьютера мы с грехом пополам начали справляться с задачей отрисовывания фракталов. Во-вторых, вычислительные методы, которые нам были раньше известны (матанализ и так далее), хорошо работали только с «гладкими» кривыми. Все кривые делятся на два больших класса: спрямляемые и неспрямляемые. На спрямляемую кривую мы можем поставить точки, и тем самым разбить ее на множество прямых отрезков. Таким образом мы посчитаем длину этой кривой, так как длина традиционно считается только прямыми отрезками. Это как в школе, когда к сложным фигурам прикладывали нитку, а потом нитку распрямляли и прикладывали к линейке. Вся классическая математика связана с таким вот свойством. К фракталам, как мы видим, ниточку не доприкладываешься.

С точки зрения классической механики, также возникают проблемы в взаимодействии с фракталами. Скорость – это вектор. У вектора должны быть направление и величина. Если мы погоним точку по любой неспрямляемой кривой, то мы увидим, что у ее скорости не будет ни направления, ни величины.

Капуста Романеско
Реальность такова: все, с чем мы имеем дело в школе: прямые, параболы, синусоиды, – это лишь красивое исключение из правил, которое в природе встречается крайне редко. Мир состоит из «монстров» - из фракталов и других неспрямляемых кривых.

А нам хочется все уметь считать, - продолжает Давид. - Сейчас в мире работа математиков сконцентрирована на том, чтобы стандартные методы математики распространить и на эти странные явления. В этом деле наблюдается прогресс, но еще есть куда стремиться. Сейчас используется следующий метод: мы берем конкретный фрактал и даем ему некую числовую характеристику. Моя научная деятельность (та, которую я начал еще в магистратуре) непосредственно связана с разработкой одного из типов характеристик этих самых фракталов. Ведется работа по двум основным направлениям. Первое – это интегрирование. Взятие интегралов по неспрямляемым кривым. Второе: у меня введены конкретные характеристики этих фракталов, они у меня называются «Показатели Марцинкевича» (в честь польского математика Йозефа Марцинкевича, а не российского националиста). Эти показатели помогают лучше справляться с некоторыми краевыми задачами. До этого были либо несчитаемые характеристики, либо менее точные.
Есть надежда, что в будущем мы переведем всю математику на рельсы неспрямляемых кривых, и это даст прибавку везде. Это даст нам гораздо большую точность в любых расчетах. В обществе распространено мнение об отдаленности математической науки от реальности, от практики. Но это не так. Одно из самых главных, чему учат на мехмате – это построение и изучение математических моделей, моделей того, что нас окружает. А уж что вы будете делать с этими моделями – решать вам. Как говорится, пистолет дали – крутись.

 
А на практике фрактальная геометрия оказывается полезной во многих областях. В первую очередь, в биотехнологиях. Например, при диагностировании онкозаболеваний. Если фрактальная сетка сосудов в каком-то месте нарушена, то следует обратить туда внимание: почти наверняка именно этот участок выступит очагом болезни. Что касается окружающей среды. Как выяснили ученые, лес – это один большой фрактал. С помощью фрактальной геометрии можно бороться с исчезновением лесного массива на Земле, прогнозировать, как именно будет разрастаться молодой лес, выявить его слабые места. Это все можно сделать, лишь наблюдая за одним деревом как частью фрактала. Более того, фрактальные антенны (которые используются в мобильных телефонах) работают лучше, чем обычные, в экономических графиках тоже наблюдаются фракталы – теперь мы лучше представляем, как с ними работать. В инженерном деле, например, при устранении трещин, а также в компьютерной графике также необходимо применение методов фрактальной геометрии.
 
Алсу ГАРАПОВА

Вид публикации: 
Анонс: 
Что объединяет папоротник, кровеносную систему человека и трещину на стене хрущевки? Ответ на это даст только математика.
КФУ ID: 
174022
Баллы: 
0
Фото: 
Ранг: 
Последний редактор: